Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1638, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37015925

RESUMEN

The pathogenesis of multi-organ dysfunction associated with severe acute SARS-CoV-2 infection remains poorly understood. Endothelial damage and microvascular thrombosis have been identified as drivers of COVID-19 severity, yet the mechanisms underlying these processes remain elusive. Here we show alterations in fluid shear stress-responsive pathways in critically ill COVID-19 adults as compared to non-COVID critically ill adults using a multiomics approach. Mechanistic in-vitro studies, using microvasculature-on-chip devices, reveal that plasma from critically ill COVID-19 adults induces fibrinogen-dependent red blood cell aggregation that mechanically damages the microvascular glycocalyx. This mechanism appears unique to COVID-19, as plasma from non-COVID sepsis patients demonstrates greater red blood cell membrane stiffness but induces less significant alterations in overall blood rheology. Multiomics analyses in pediatric patients with acute COVID-19 or the post-infectious multi-inflammatory syndrome in children (MIS-C) demonstrate little overlap in plasma cytokine and metabolite changes compared to adult COVID-19 patients. Instead, pediatric acute COVID-19 and MIS-C patients show alterations strongly associated with cytokine upregulation. These findings link high fibrinogen and red blood cell aggregation with endotheliopathy in adult COVID-19 patients and highlight differences in the key mediators of pathogenesis between adult and pediatric populations.


Asunto(s)
COVID-19 , Humanos , Niño , Adulto , SARS-CoV-2 , Enfermedad Crítica , Citocinas , Fibrinógeno
2.
J Alzheimers Dis Rep ; 7(1): 165-172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891255

RESUMEN

After age, polymorphisms of the Apolipoprotein E (APOE) gene are the biggest risk factor for the development of Alzheimer's disease (AD). During our investigation to discovery biomarkers in plasma, using 2D gel electrophoresis, we found an individual with and unusual apoE isoelectric point compared to APOE ɛ2, ɛ3, and ɛ4 carriers. Whole exome sequencing of APOE from the donor confirmed a single nucleotide polymorphism (SNP) in exon 4, translating to a rare Q222K missense mutation. The apoE ɛ4 (Q222K) mutation did not form dimers or complexes observed for apoE ɛ2 & ɛ3 proteins.

3.
Proteome Sci ; 20(1): 2, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35081972

RESUMEN

BACKGROUND: The Australian Imaging and Biomarker Lifestyle (AIBL) study of aging is designed to aid the discovery of biomarkers. The current study aimed to discover differentially expressed plasma proteins that could yield a blood-based screening tool for Alzheimer's disease. METHODS: The concentration of proteins in plasma covers a vast range of 12 orders of magnitude. Therefore, to search for medium to low abundant biomarkers and elucidate mechanisms of AD, we immuno-depleted the most abundant plasma proteins and pre-fractionated the remaining proteins by HPLC, prior to two-dimensional gel electrophoresis. The relative levels of approximately 3400 protein species resolved on the 2D gels were compared using in-gel differential analysis with spectrally resolved fluorescent protein detection dyes (Zdyes™). Here we report on analysis of pooled plasma samples from an initial screen of a sex-matched cohort of 72 probable AD patients and 72 healthy controls from the baseline time point of AIBL. RESULTS: We report significant changes in variants of apolipoprotein E, haptoglobin, α1 anti-trypsin, inter-α trypsin inhibitor, histidine-rich glycoprotein, and a protein of unknown identity. α1 anti-trypsin and α1 anti-chymotrypsin demonstrated plasma concentrations that were dependent on APOE ε4 allele dose. Our analysis also identified an association with the level of Vitamin D binding protein fragments and complement factor I with sex. We then conducted a preliminary validation study, on unique individual samples compared to the discovery cohort, using a targeted LC-MS/MS assay on a subset of discovered biomarkers. We found that targets that displayed a high degree of isoform specific changes in the 2D gels were not changed in the targeted MS assay which reports on the total level of the biomarker. CONCLUSIONS: This demonstrates that further development of mass spectrometry assays is needed to capture the isoform complexity that exists in theses biological samples. However, this study indicates that a peripheral protein signature has potential to aid in the characterization of AD.

4.
Nat Commun ; 12(1): 3493, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108467

RESUMEN

In brown adipose tissue, thermogenesis is suppressed by thioesterase superfamily member 1 (Them1), a long chain fatty acyl-CoA thioesterase. Them1 is highly upregulated by cold ambient temperature, where it reduces fatty acid availability and limits thermogenesis. Here, we show that Them1 regulates metabolism by undergoing conformational changes in response to ß-adrenergic stimulation that alter Them1 intracellular distribution. Them1 forms metabolically active puncta near lipid droplets and mitochondria. Upon stimulation, Them1 is phosphorylated at the N-terminus, inhibiting puncta formation and activity and resulting in a diffuse intracellular localization. We show by correlative light and electron microscopy that Them1 puncta are biomolecular condensates that are inhibited by phosphorylation. Thus, Them1 forms intracellular biomolecular condensates that limit fatty acid oxidation and suppress thermogenesis. During a period of energy demand, the condensates are disrupted by phosphorylation to allow for maximal thermogenesis. The stimulus-coupled reorganization of Them1 provides fine-tuning of thermogenesis and energy expenditure.


Asunto(s)
Metabolismo Energético , Palmitoil-CoA Hidrolasa/metabolismo , Tejido Adiposo Pardo/metabolismo , Agonistas Adrenérgicos/farmacología , Secuencia de Aminoácidos , Animales , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/metabolismo , Espacio Intracelular/metabolismo , Gotas Lipídicas/metabolismo , Ratones , Mitocondrias/metabolismo , Oxidación-Reducción , Palmitoil-CoA Hidrolasa/química , Palmitoil-CoA Hidrolasa/genética , Fosforilación/efectos de los fármacos , Agregado de Proteínas , Serina/metabolismo , Termogénesis/efectos de los fármacos
5.
Anal Chem ; 89(11): 6136-6145, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28453255

RESUMEN

The use of mass spectrometry coupled with chemical cross-linking of proteins has become a powerful tool for proteins structure and interactions studies. Unlike structural analysis of proteins using chemical reagents specific for lysine or cysteine residues, identification of gas-phase fragmentation patterns of endogenous dityrosine cross-linked peptides have not been investigated. Dityrosine cross-linking in proteins and peptides are clinical markers of oxidative stress, aging, and neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. In this study, we investigated and characterized the fragmentation pattern of a synthetically prepared dityrosine cross-linked dimer of Aß(1-16) using ESI tandem mass spectrometry. We then detailed the fragmentation pattern of dityrosine cross-linked Aß(1-16), using collision induced dissociation (CID), higher-energy collision induced dissociation (HCD), electron transfer dissociation (ETD), and electron capture dissociation (ECD). Application of these generic fragmentation rules of dityrosine cross-linked peptides allowed for the identification of dityrosine cross-links in peptides of Aß and α-synuclein generated in vitro by enzymatic peroxidation. We report, for the first time, the dityrosine cross-linked residues in human hemoglobin and α-synuclein under oxidative conditions. Together these tools open up the potential for automated analysis of this naturally occurring post-translation modification in neurodegenerative diseases as well as other pathological conditions.


Asunto(s)
Reactivos de Enlaces Cruzados/análisis , Péptidos/análisis , Tirosina/análogos & derivados , Espectrometría de Masas en Tándem , Tirosina/análisis
6.
J Neurosci ; 35(7): 2871-84, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25698727

RESUMEN

The extracellular accumulation of amyloid ß (Aß) peptides is characteristic of Alzheimer's disease (AD). However, formation of diffusible, oligomeric forms of Aß, both on and off pathways to amyloid fibrils, is thought to include neurotoxic species responsible for synaptic loss and neurodegeneration, rather than polymeric amyloid aggregates. The 8-hydroxyquinolines (8-HQ) clioquinol (CQ) and PBT2 were developed for their ability to inhibit metal-mediated generation of reactive oxygen species from Aß:Cu complexes and have both undergone preclinical and Phase II clinical development for the treatment of AD. Their respective modes of action are not fully understood and may include both inhibition of Aß fibrillar polymerization and direct depolymerization of existing Aß fibrils. In the present study, we find that CQ and PBT2 can interact directly with Aß and affect its propensity to aggregate. Using a combination of biophysical techniques, we demonstrate that, in the presence of these 8-HQs and in the absence of metal ions, Aß associates with two 8-HQ molecules and forms a dimer. Furthermore, 8-HQ bind Aß with an affinity of 1-10 µm and suppress the formation of large (>30 kDa) oligomers. The stabilized low molecular weight species are nontoxic. Treatment with 8-HQs also reduces the levels of in vivo soluble oligomers in a Caenorhabditis elegans model of Aß toxicity. We propose that 8-HQs possess an additional mechanism of action that neutralizes neurotoxic Aß oligomer formation through stabilization of small (dimeric) nontoxic Aß conformers.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Hidroxiquinolinas/metabolismo , Fragmentos de Péptidos/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/ultraestructura , Animales , Benzotiazoles , Biofisica , Caenorhabditis elegans , Células Cultivadas , Corteza Cerebral/citología , Cromatografía en Gel , Clioquinol/análogos & derivados , Clioquinol/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Ratones , Microscopía Electrónica , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/ultraestructura , Unión Proteica/efectos de los fármacos , Dispersión del Ángulo Pequeño , Tiazoles/metabolismo
7.
Biochem Biophys Res Commun ; 391(2): 1216-21, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20006588

RESUMEN

Neurofibromin and calcium/calmodulin-dependent serine protein kinase (CASK) are membrane-associated signalling and scaffolding proteins which are mutated in human genetic neurological disorders. Syndecan-2 is a highly glycosylated transmembrane protein whose intracellular C-terminus has previously been shown to interact with the post-synaptic density 95/discs large/zonula occludens-1 (PDZ) domain of CASK and with two separate regions of neurofibromin. These three proteins collaborate to orchestrate the induction of filopodia and dendritic spines. We have used systematic mutagenesis of the intracellular region of syndecan-2 and a quantitative yeast two-hybrid (Y2H) assay to study the determinants of their interactions. We show that syndecan's interactions with both CASK and neurofibromin are dependent on syndecan homodimerization and that neurofibromin largely interacts with the membrane-proximal part of the dimeric syndecan intracellular domain, leaving the membrane-distal C-terminus free to interact with CASK. We conducted a phylogenetic study of syndecan sequences, finding correspondence between conserved residues and mutations affecting both dimerization and interactions; we also find that fish have a very different syndecan repertoire from tetrapods. Further Y2H screens reveal that syndecan-2 interacts with a third distinct region of neurofibromin, and that the multiple neurofibromin regions bind competitively, rather than co-operatively, to syndecan. We combine these results to propose a model for the ternary syndecan-neurofibromin-CASK complex.


Asunto(s)
Guanilato-Quinasas/metabolismo , Neurofibromina 1/metabolismo , Dominios PDZ , Sindecano-2/metabolismo , Secuencia de Aminoácidos , Guanilato-Quinasas/genética , Humanos , Mutación , Neurofibromina 1/genética , Filogenia , Multimerización de Proteína , Estructura Terciaria de Proteína , Sindecano-2/clasificación , Sindecano-2/genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...